skip to main content


Search for: All records

Creators/Authors contains: "Caldwell, Joshua D."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wavelength-selective thermal emitters (WS-EMs) hold considerable appeal due to the scarcity of cost-effective, narrow-band sources in the mid-to-long-wave infrared spectrum. WS-EMs achieved via dielectric materials typically exhibit thermal emission peaks with high quality factors (Qfactors), but their optical responses are prone to temperature fluctuations. Metallic EMs, on the other hand, show negligible drifts with temperature changes, but theirQfactors usually hover around 10. In this study, we introduce and experimentally verify an EM grounded in plasmonic quasi-bound states in the continuum (BICs) within a mirror-coupled system. Our design numerically delivers an ultra-narrowband single peak with aQfactor of approximately 64 and near-unity absorptance that can be freely tuned within an expansive band of more than 10 µm. By introducing air slots symmetrically, theQfactor can be further augmented to around 100. Multipolar analysis and phase diagrams are presented to elucidate the operational principle. Importantly, our infrared spectral measurements affirm the remarkable resilience of our designs’ resonance frequency in the face of temperature fluctuations over 300°C. Additionally, we develop an effective impedance model based on the optical nanoantenna theory to understand how further tuning of the emission properties is achieved through precise engineering of the slot. This research thus heralds the potential of applying plasmonic quasi-BICs in designing ultra-narrowband, temperature-stable thermal emitters in the mid-infrared. Moreover, such a concept may be adaptable to other frequency ranges, such as near-infrared, terahertz, and gigahertz.

     
    more » « less
  2. At low carboxylate concentrations the sulfur source is highly reactive thiourea, which gives rise to sulfur rich nanoparticles. At high carboxylate concentrations, the sulfur source is the less reactive thiocyanate, resulting in sulfur poor phases.

     
    more » « less
    Free, publicly-accessible full text available September 26, 2024
  3. Free, publicly-accessible full text available June 14, 2024
  4. Abstract

    One of the main bottlenecks in the development of terahertz (THz) and long-wave infrared (LWIR) technologies is the limited intrinsic response of traditional materials. Hyperbolic phonon polaritons (HPhPs) of van der Waals semiconductors couple strongly with THz and LWIR radiation. However, the mismatch of photon − polariton momentum makes far-field excitation of HPhPs challenging. Here, we propose an In-Plane Hyperbolic Polariton Tuner that is based on patterning van der Waals semiconductors, here α-MoO3, into ribbon arrays. We demonstrate that such tuners respond directly to far-field excitation and give rise to LWIR and THz resonances with high quality factors up to 300, which are strongly dependent on in-plane hyperbolic polariton of the patterned α-MoO3. We further show that with this tuner, intensity regulation of reflected and transmitted electromagnetic waves, as well as their wavelength and polarization selection can be achieved. Our results can help the development of THz and LWIR miniaturized devices.

     
    more » « less
  5. Abstract

    Structural anisotropy in crystals is crucial for controlling light propagation, particularly in the infrared spectral regime where optical frequencies overlap with crystalline lattice resonances, enabling light-matter coupled quasiparticles called phonon polaritons (PhPs). Exploring PhPs in anisotropic materials like hBN and MoO3has led to advancements in light confinement and manipulation. In a recent study, PhPs in the monoclinic crystal β-Ga2O3(bGO) were shown to exhibit strongly asymmetric propagation with a frequency dispersive optical axis. Here, using scanning near-field optical microscopy (s-SNOM), we directly image the symmetry-broken propagation of hyperbolic shear polaritons in bGO. Further, we demonstrate the control and enhancement of shear-induced propagation asymmetry by varying the incident laser orientation and polariton momentum using different sizes of nano-antennas. Finally, we observe significant rotation of the hyperbola axis by changing the frequency of incident light. Our findings lay the groundwork for the widespread utilization and implementation of polaritons in low-symmetry crystals.

     
    more » « less
  6. Abstract The lattice symmetry of a crystal is one of the most important factors in determining its physical properties. Particularly, low-symmetry crystals offer powerful opportunities to control light propagation, polarization and phase 1–4 . Materials featuring extreme optical anisotropy can support a hyperbolic response, enabling coupled light–matter interactions, also known as polaritons, with highly directional propagation and compression of light to deeply sub-wavelength scales 5 . Here we show that monoclinic crystals can support hyperbolic shear polaritons, a new polariton class arising in the mid-infrared to far-infrared due to shear phenomena in the dielectric response. This feature emerges in materials in which the dielectric tensor cannot be diagonalized, that is, in low-symmetry monoclinic and triclinic crystals in which several oscillators with non-orthogonal relative orientations contribute to the optical response 6,7 . Hyperbolic shear polaritons complement previous observations of hyperbolic phonon polaritons in orthorhombic 1,3,4 and hexagonal 8,9 crystal systems, unveiling new features, such as the continuous evolution of their propagation direction with frequency, tilted wavefronts and asymmetric responses. The interplay between diagonal loss and off-diagonal shear phenomena in the dielectric response of these materials has implications for new forms of non-Hermitian and topological photonic states. We anticipate that our results will motivate new directions for polariton physics in low-symmetry materials, which include geological minerals 10 , many common oxides 11 and organic crystals 12 , greatly expanding the material base and extending design opportunities for compact photonic devices. 
    more » « less
  7. Abstract

    Hyperbolic phonon polaritons (HPhPs) are stimulated by coupling infrared (IR) photons with the polar lattice vibrations. Such HPhPs offer low‐loss, highly confined light propagation at subwavelength scales with out‐of‐plane or in‐plane hyperbolic wavefronts. For HPhPs, while a hyperbolic dispersion implies multiple propagating modes with a distribution of wavevectors at a given frequency, so far it has been challenging to experimentally launch and probe the higher‐order modes that offer stronger wavelength compression, especially for in‐plane HPhPs. In this work, the experimental observation of higher‐order in‐plane HPhP modes stimulated on a 3C‐SiC nanowire (NW)/α‐MoO3heterostructure is reported where leveraging both the low‐dimensionality and low‐loss nature of the polar NWs, higher‐order HPhPs modes within 2D α‐MoO3crystal are launched by the 1D 3C‐SiC NW. The launching mechanism is further studied and the requirements for efficiently launching of such higher‐order modes are determined. In addition, by altering the geometric orientation between the 3C‐SiC NW and α‐MoO3crystal, the manipulation of higher‐order HPhP dispersions as a method of tuning is demonstrated. This work illustrates an extremely anisotropic low dimensional heterostructure platform to confine and configure electromagnetic waves at the deep‐subwavelength scales for a range of IR applications including sensing, nano‐imaging, and on‐chip photonics.

     
    more » « less